ГОСТ 6552-80

Группа Л51 ОКП 26 1213 0020 00 Дата введения 1 января 1982 года

РЕАКТИВЫ

КИСЛОТА ОРТОФОСФОРНАЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

РАЗРАБОТАН И ВНЕСЕН

Министерством химической промышленности СССР

Разработчики: Г.В. Грязнов, Т.Г. Манова, И.Л. Ротенберг, К.П. Лесина, Л.В. Кидиярова, И.В. Жарова.

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ

Постановлением Государственного комитета СССР по стандартам от 03.01.80 N 26

ВЗАМЕН ГОСТ 6552-58 КИСЛОТА ОРТОФОСФОРНАЯ

Технические условия

Настоящий стандарт распространяется на ортофосфорную кислоту (кислота фосфорная), которая представляет собой бесцветную жидкость, не имеющую запаха (или прозрачные бесцветные кристаллы, расплывающиеся на воздухе).

Формула Н₃РО₄.

Относительная молекулярная масса (по международным атомным массам 1985 г.) — 97,99.

Требования настоящего стандарта являются обязательными. (Измененная редакция, Изм. № 1, 2).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1. Ортофосфорная кислота должна быть изготовлена в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 1.2. По физико-химическим показателям ортофосфорная кислота должна соответствовать требованиям и нормам, указанным в таблице.

Наименование показателя	Норма		
	Химически чистый (х.ч.)	Чистый для анализа	Чистый (ч.)
	ОКП 26 1213 0023 08	(ч.д.а.)	ОКП 26 1213 0021 10
	ОКП 26 1213 0022 09		
1. Внешний вид и цвет	Должен выдерживать испытание по п. 4.2		
2. Массовая доля	87	85	85
ортофосфорной кислоты			
(H ₃ PO ₄), %, не менее			
3. Плотность ρ_4^{20} , г/см ³ , не	1,71	1,69	1,69
менее			
4. Массовая доля остатка после	0,05	0,1	0,2
прокаливания, %, не более			
5. Массовая доля летучих	0,0004	0,0010	0,0015
кислот (СН ₃ СООН), %, не			
более			
6. Массовая доля нитратов	0,0003	0,0005	0,0005
(NO ₃), %, не более			
7. Массовая доля сульфатов	0,0005	0,002	0,003
(SO ₄), %, не более			
8. Массовая доля хлоридов (Cl),	0,0001	0,0002	0,0003
%, не более			
9. Массовая доля аммонийных	0,0005	0,002	0,002
солей (NH ₄), %, не более			
10. Массовая доля железа (Fe),	0,0005	0,001	0,002
%, не более			
11. Массовая доля мышьяка	0,00005	0,0001	0,0002
(Аs), %, не более			
12. Массовая доля тяжелых	0,0005	0,0005	0,001
металлов (Рв), %, не более			
13. Массовая доля веществ,	0,003	0,005	0,05
восстанавливающих KMnO ₄			
(Н ₃ РО ₃), %, не более			

(Измененная редакция, Изм. № 1).

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1. Ортофосфорная кислота по степени воздействия на организм человека относится к веществам 2-го класса опасности по ГОСТ 12.1.005-88. Предельно допустимая концентрация продукта (по фосфорному ангидриду) в воздухе рабочей зоны производственных помещений составляет 1 мг/м³. При увеличении концентрации пары ортофосфорной кислоты вызывают атрофические процессы слизистых оболочек и крошение зубов, а также воспалительные заболевания кожи.

(Измененная редакция, Изм. № 2).

- 2.2. При работе с препаратом следует применять индивидуальные средства защиты (респиратор, резиновые перчатки, защитные очки), а также соблюдать правила личной гигиены.
- 2.3. Помещения, в которых проводят работы с препаратом, должны быть оборудованы общей приточно-вытяжной вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.

(Измененная редакция, Изм. № 2).

2.4. При проведении анализа препарата с использованием горючего газа следует соблюдать меры противопожарной безопасности.

3. ПРАВИЛА ПРИЕМКИ

- 3.1. Правила приемки по ГОСТ 3885-73.
- 3.2. Массовую долю аммонийных солей, остатка после прокаливания и летучих кислот изготовитель определяет периодически в каждой 20-й партии.

(Измененная редакция, Изм. № 1).

4. МЕТОДЫ АНАЛИЗА

4.1а. Общие указания по проведению анализа — по ГОСТ 27025-86.

При взвешивании применяют лабораторные весы общего назначения типов ВЛР-200 г и ВЛКТ-500 г-М или ВЛЭ-200 г.

Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте.

(Введен дополнительно, Изм. № 2).

4.1. Пробы отбирают по ГОСТ 3885-73. Масса средней пробы должна быть не менее 1800 г. Объем ортофосфорной кислоты, необходимый для анализа, отбирают пипеткой с резиновой грушей или цилиндром с погрешностью не более 1 %.

(Измененная редакция, Изм. № 2).

- 4.2. Определение внешнего вида и цвета
- 4.2.1. Реактивы, посуда

Пробирка — П-2-10-90 из бесцветного стекла по ГОСТ 25336-82.

Вода дистиллированная по ГОСТ 6709-72.

4.2.2. Проведение анализа

5 см³ препарата помещают в пробирку из бесцветного стекла. В другую такую же пробирку помещают 5 см³ дистиллированной воды.

При наличии в пробе кристаллов пробирку с пробой следует опустить в воду, имеющую температуру 23-25 °C, для расплавления кристаллов.

Препарат считают соответствующим требованиям настоящего стандарта, если при сравнении с дистиллированной водой по оси пробирки он будет прозрачным, бесцветным и не будет содержать взвешенных частиц.

- 4.2.1; 4.2.2. (Измененная редакция, Изм. № 1).
- 4.3. Определение массовой доли ортофосфорной кислоты
- 4.3.1. Реактивы, растворы, аппаратура и посуда

Вода дистиллированная по ГОСТ 6709-72.

Натрия гидроокись по ГОСТ 4328-77, раствор концентрации с (NaOH) = 0.1 моль/дм³ (0.1 н.); готовят по ГОСТ 25794.1-83; при определении коэффициента поправки используют смешанный индикатор метиловый красный — метиленовый голубой, который готовят по ГОСТ 4919.1-77.

Иономер универсальный ЭВ-74 или другой прибор с пределом допускаемой основной погрешности +0,05 рH.

Бюретка 1(3)-2-50-0,1 по ГОСТ 29251-74.

Колба 2-250-2 по ГОСТ 1770-74.

Пипетка 2-2-25 по ГОСТ 20292-74.

Стакан Н-2-150 ТХС по ГОСТ 25336-82.

Стаканчик СН-34/12 по ГОСТ 25336-82.

Цилиндр 1(3)-100 по ГОСТ 1770-74.

4.3.2. Проведение анализа

Около $2,5000 \, \Gamma \, (1,5 \, \text{см}^3)$ препарата помещают в мерную колбу, растворяют в воде, доводят объем раствора водой до метки и перемешивают.

25 см³ полученного раствора помещают пипеткой в стакан, прибавляют 75 см³ воды и титруют из бюретки при перемешивании раствора магнитной мешалкой раствором гидроокиси натрия до рН 4,6, используя в качестве измерительного электрода — стеклянный, в качестве электрода сравнения — хлорсеребряный или насыщенный каломельный.

4.3.3. Обработка результатов

Массовую долю ортофосфорной кислоты (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0,009799 \cdot 250 \cdot 100}{m \cdot 25},$$

где V — объем раствора гидроокиси натрия концентрации точно 0,1 моль/дм³, израсходованный на титрование, см³;

m — масса навески препарата, г;

0,009799 — масса ортофосфорной кислоты, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0,1 моль/дм³.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,3 %.

Допускаемая абсолютная суммарная погрешность результата анализа +0.5 % при доверительной вероятности P=0.95.

- 4.3.1—4.3.3. (Измененная редакция, Изм. № 1, 2).
- 4.4. Определение плотности проводят с помощью денсиметра по ГОСТ 18995.1-73
- 4.5. Определение массовой доли остатка после прокаливания

5 г (около 2.9 см³) препарата помещают в платиновую чашку (ГОСТ 6563-75), предварительно прокаленную до постоянной массы и взвешенную (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака), выпаривают в муфельной печи, постепенно повышая температуру, а затем прокаливают остаток при 900—1000 °C до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после прокаливания не будет превышать:

для препарата химически чистый — 2,5 мг,

для препарата чистый для анализа — 5,0 мг,

для препарата чистый — 10,0 мг.

Допускаемая относительная суммарная погрешность результата анализа +25~% для препарата химически чистый и +10~% для препарата чистый для анализа и чистый при доверительной вероятности P=0.96.

(Измененная редакция, Изм. № 1, 2).

- 4.6. Определение массовой доли летучих кислот (СН₃СООН)
- 4.6.1. Реактивы, растворы, аппаратура и посуда

Вода дистиллированная, не содержащая углекислоты; готовят по ГОСТ 4517-87.

Натрия гидроокись по ГОСТ 4328-77, раствор концентрации с (NaOH) = 0.01 моль/дм³ (0.01 н.), готовят по ГОСТ 25794.1-83.

Фенолфталеин (индикатор) по ТУ 6-09-5360-87, спиртовой раствор с массовой долей 1%; готовят по ГОСТ 4919.1-77.

Спирт этиловый ректификованный технический по ГОСТ 18300-87, высшего сорта.

Бюретка 6-2-5 или 7-2-10 по ГОСТ 29251-91.

Колба 2-200-2 по ГОСТ 1770-74.

Колба К-1-250-29/32 ТС по ГОСТ 25336-82.

Колба Кн-2-100-22 ТХС по ГОСТ 25336-82.

Холодильник ХПТ-1-300-14/23 ХС по ГОСТ 25336-82.

Цилиндр 1(3)-100 по ГОСТ 1770. (Измененная редакция, Изм. № 1, 2).

4.6.2. Приготовление раствора препарата для определения примесей

100 г (около 58 см³) препарата помещают в колбу 2—200—2, растворяют в воде, доводят объем раствора водой до метки и перемешивают — раствор 1.

(Измененная редакция, Изм. № 1).

4.6.3. Проведение анализа

100 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 50 г препарата), помещают в колбу К-1-250-29/32 и прибавляют 100 см³ воды. Затем колбу с содержимым присоединяют к холодильнику и отгоняют 50 см³ жидкости, собирая отгон в колбу Кн-2-100-22 (с меткой на 75 см³), содержащую 25 см³ воды. К отгону прибавляют 2 капли раствора фенолфталеина и титруют из бюретки раствором гидроокиси натрия до появления неисчезающей розовой окраски раствора.

Одновременно в тех же условиях проводят контрольный опыт, отгоняя тот же объем из $100 \,$ см³ дистиллированной воды.

4.6.4. Обработка результатов

Массовую долю летучих кислот (СН₃СООН) Х₁, %, вычисляют по формуле

$$X_1 = \frac{(V - V_1) \cdot 0,0006 \cdot 100}{m},$$

где V — объем раствора гидроокиси натрия концентрации точно 0,01 моль/дм³, израсходованный на титрование анализируемого раствора, см³;

 V_1 — объем раствора гидроокиси натрия концентрации точно 0,01 моль/дм³, израсходованный на титрование контрольного раствора, см³;

т — масса навески анализируемого препарата, г.

0,0006 — масса CH₃COOH, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0,01 моль/дм³, г.

Компания «Акватека»

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,0002 %.

Допускаемая абсолютная суммарная погрешность результата анализа $\pm 0,0002~\%$ при доверительной вероятности P=0,95.

4.7. Определение массовой доли нитратов проводят по ГОСТ 10671.2-74.

При этом 4 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 2 г препарата), помещают в коническую колбу вместимостью 50—100 см³, прибавляют 6 см³ воды и перемешивают. Далее определение проводят методом с применением индигокармина.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 5 мин окраска анализируемого раствора не будет слабее окраски раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

```
для препарата химически чистый — 0,006~\rm M\Gamma~NO_3, для препарата чистый для анализа — 0,010~\rm M\Gamma~NO_3, для препарата чистый — 0,010~\rm M\Gamma~NO_3,
```

1 см³ раствора хлористого натрия, 1 см³ раствора индигокармина и 12 см³ концентрированной серной кислоты.

4.6.3—4.7. (Измененная редакция, Изм. № 1, 2).

4.8. Определение массовой доли сульфатов проводят по ГОСТ 10671.5-74.

При этом 12,5 г (около 7,2 см³) препарата помещают в коническую колбу вместимостью 100 см³ (с меткой на 50 см³), растворяют в 20 см³ воды и нейтрализуют раствором аммиака (ГОСТ 3760-79) с массовой долей 10 % по 2,4-динитрофенолу (раствор с массовой долей 0,1% готовят по ГОСТ 4919.1-77) до появления слабо-желтой окраски, наблюдаемой на фоне молочного стекла. Затем раствор охлаждают, доводят объем раствора водой до метки и перемешивают — раствор 2.

 16 см^3 раствора 2 (соответствуют 4 г препарата) помещают цилиндром в стакан или коническую колбу вместимостью 50 см^3 , прибавляют $2,5 \text{ см}^3$ воды, $7,5 \text{ см}^3$ раствора соляной кислоты и перемешивают.

Далее определение проводят визуально-нефелометрическим методом (способ 1), не прибавляя раствора соляной кислоты и прибавляя 3 см 3 этилового спирта вместо 3 см 3 раствора крахмала.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 30 мин опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора,

приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0,015 мг SO₄,

для препарата чистый для анализа — 0,06 мг SO₄,

для препарата чистый — 0,09 мг SO₄,

 4 см^3 раствора 2 (соответствуют 1 г препарата), 3 см^3 раствора соляной кислоты, 3 см^3 спирта и 3 см^3 раствора хлористого бария.

(Измененная редакция, Изм. № 2).

4.9. Определение массовой доли хлоридов проводят по ГОСТ 10671.7.

При этом 14 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 7 г препарата), помещают цилиндром в коническую колбу вместимостью 100 см³, прибавляют 23 см³ воды и перемешивают. Далее определение проводят визуально-нефелометрическим методом, прибавляя 5 см³ раствора азотной кислоты вместо 2 см³.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 20 мин опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0,005 мг Cl,

для препарата чистый для анализа — 0,010 мг Cl,

для препарата чистый — 0,015 мг Cl,

4 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 2 г препарата), 5 см³ раствора азотной кислоты и 1 см³ раствора азотнокислого серебра.

(Измененная редакция, Изм. № 1, 2).

- 4.10. Определение массовой доли аммонийных солей
- 4.10.1. Приборы, реактивы и растворы

Приборы, реактивы и растворы — по ГОСТ 10671.4.

Раствор массовой концентрации NH_4 1 мг/см³, готовят по ГОСТ 4212-76, соответствующим разбавлением готовят раствор массовой концентрации NH_4 0,01 мг/см³.

4.10.2. Проведение анализа

4 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 2 г препарата), помещают в круглодонную колбу, прибавляют 31 см³ воды, 15 см³ раствора гидроокиси натрия, быстро присоединяют колбу к прибору для отделения аммиака дистилляцией, перемешивают содержимое колбы и сразу отгоняют 25 см³ раствора в мерный цилиндр, содержащий 5 см³ воды и 5 см³ раствора соляной кислоты. Раствор переносят в коническую колбу или пробирку (с пришлифованной пробкой) вместимостью 100 см³, прибавляют 10 см³ воды, перемешивают, прибавляют при перемешивании 1 см³ раствора гидроокиси натрия и 1 см³ реактива Несслера.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 10 мин окраска анализируемого раствора не будет интенсивнее окраски раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0,01 мг NH4,

для препарата чистый для анализа — 0,04 мг NH4,

для препарата чистый — 0,04 мг NH4,

 $5~{\rm cm^3}$ раствора соляной кислоты, $1~{\rm cm^3}$ раствора гидроокиси натрия и $1~{\rm cm^3}$ реактива Несслера.

В результат определения вводят поправку на массу аммонийных солей в применяемом для перегонки объеме раствора гидроокиси натрия, определяемую контрольным опытом.

4.10.1; 4.10.2. (Измененная редакция, Изм. № 2).

4.11. Определение массовой доли железа проводят по ГОСТ 10555-75.

При этом 2 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 1 г препарата), помещают пипеткой в мерную колбу вместимостью 50 см³ и прибавляют 18 см³ воды. Далее определение проводят сульфосалициловым методом.

Препарат считают соответствующим требованиям настоящего стандарта, если масса железа не будет превышать:

для препарата химически чистый — 0,005 мг,

для препарата чистый для анализа — 0,010 мг,

для препарата чистый — 0,020 мг.

Допускается заканчивать определение визуально.

При разногласиях в оценке массовой доли железа анализ заканчивают фотометрически.

4.12. Определение массовой доли мышьяка проводят по ГОСТ 10485-75. При этом 5 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 2,5 г препарата), помещают пипеткой в колбу прибора и прибавляют 25 см³ воды.

Далее определение проводят визуальным методом с применением бромно-ртутной бумаги в солянокислой или сернокислой среде.

Препарат считают соответствующим требованиям настоящего стандарта, если окраска бромно-ртутной бумаги от анализируемого раствора не будет интенсивнее окраски бромно-ртутной бумаги от раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0,00125 мг As,

для препарата чистый для анализа — 0,0025 мг As,

для препарата чистый — 0,0050 мг As и соответствующие количества реактивов по ГОСТ 10485-75.

При разногласиях в оценке массовой доли мышьяка анализ проводят в сернокислой среде.

4.13. Определение массовой доли тяжелых металлов проводят по ГОСТ 17319-76.

При этом 10 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 5 г препарата), помещают пипеткой в коническую колбу вместимостью 100 см³ (с меткой на 30 см³, с пришлифованной или резиновой пробкой), прибавляют 5 см³ воды, нейтрализуют раствором аммиака (ГОСТ 3760-79) с массовой долей 10 % по 2,4-динитрофенолу (раствор с массовой долей 0,1 % готовят по ГОСТ 4919.1-77), доводят объем раствора водой до метки и перемешивают. Далее определение проводят сероводородным методом, прибавляя 5 см³ уксусной кислоты вместо 1 см³.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая окраска анализируемого раствора не будет интенсивнее окраски раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0,02 мг Рb,

для препарата чистый для анализа — 0,02 мг Рb,

для препарата чистый — 0,04 мг Рb,

2 см³ раствора 1, приготовленного по п. 4.6.2 (соответствуют 1 г препарата) и нейтрализованного раствором аммиака по 2,4-динитрофенолу, 5 см³ уксусной кислоты, 1 см³ раствора уксуснокислого аммония и 10 см³ сероводородной воды.

- 4.11—4.13. (Измененная редакция, Изм. № 1, 2).
- 4.14. Определение массовой доли веществ, восстанавливающих КМпО₄ (H₃PO₃)
- 4.14.1. Реактивы, растворы, аппаратура и посуда

Вода дистиллированная по ГОСТ 6709-72, перегнанная в присутствии КМпО4.

Калий марганцовокислый по ГОСТ 20490-75, раствор концентрации с ($\frac{1}{2}$ H₂C₂O₄· 2H₂O) = = 0,1 моль/дм³ (0,1 н.), готовят по ГОСТ 25794.2-83.

Кислота серная по ГОСТ 4204-77, раствор концентрации с ($\frac{1}{5}$ KMnO₄) = 0,1 моль/дм³ (0,1 н.), готовят по ГОСТ 25794.2-73.

Кислота щавелевая по ГОСТ 22180-76, раствор с массовой долей 16 %; готовят по ГОСТ 4517.

Бюретка 6-2-5 или 7-2-10 по ГОСТ 29251.

Колба Кн-2-250-34 ТХС по ГОСТ 25336-82.

Цилиндр 1(3)-100 по ГОСТ 1770-74.

4.14.2. Проведение анализа

100 г (около 60 см³) препарата химически чистый и чистый для анализа или 10 г (около 6 см³) препарата чистый помещают цилиндром (препарат х. ч. и ч. д. а.) и пипеткой (препарат ч.) в колбу Кн-2-250-34, прибавляют 100 см³ воды, 25 см³ раствора серной кислоты, 5,0 см³ раствора марганцовокислого калия и кипятят 1 мин. Горячий раствор титруют из бюретки раствором щавелевой кислоты.

Одновременно в тех же условиях проводят титрование контрольного раствора, содержащего 100 см³ воды, 25 см³ раствора серной кислоты и 5,0 см³ раствора марганцовокислого калия.

4.14.3. Обработка результатов

Массовую долю веществ, восстанавливающих марганцовокислый калий (H_3PO_3) X_2 , %, вычисляют по формуле

$$X_2 = \frac{(V - V_1) \cdot 0,0041 \cdot 100}{m},$$

где V_1 — объем раствора щавелевой кислоты концентрации точно 0,1 моль/дм³, израсходованный на титрование анализируемого раствора, см³;

V — объем раствора щавелевой кислоты концентрации точно 0,1 моль/дм³, израсходованный на титрование контрольного раствора, см³;

m — масса навески препарата, г;

0,0041 — масса H_3PO_3 , соответствующая 1 см³ раствора щавелевой кислоты концентрации точно 0,1 моль/дм³, Γ .

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 20 %.

Допускаемая относительная суммарная погрешность результата анализа +20 % при доверительной вероятности P=0.95.

4.14.1—4.14.3. (Измененная редакция, Изм. № 1, 2).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Препарат упаковывают и маркируют в соответствии с ГОСТ 3885-73.

Вид и тип тары: 3-1, 8-1, 3-5, 8-2, 4-2, 8-5, 9-1.

Группа фасовки: IV, V, VI, VII.

На тару наносят знак опасности по ГОСТ 19433-88 (класс 8, подкласс 8.1, черт. 8, классификационный шифр 8113), серийный номер ООН 1805.

(Измененная редакция, Изм. № 1, 2).

- 5.2. Препарат перевозят транспортом всех видов в соответствии с правилами перевозки грузов, действующими на транспорте данного вида.
- 5.3. Препарат хранят в упаковке изготовителя в крытых отапливаемых складских помещениях.

Для перевода закристаллизованной ортофосфорной кислоты в жидкое состояние (без изменения физико-химических свойств кислоты) применяют постепенное нагревание до 50–60 °C. (Измененная редакция, Изм. № 2).

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Изготовитель гарантирует соответствие ортофосфорной кислоты требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - 6.2. Гарантийный срок хранения три года со дня изготовления. Разд. 6. (Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. Разработан и внесен Министерством химической промышленности СССР
- 2. Утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 03.01.80 № 26
 - 3. Взамен ГОСТ 6552-58

4. Ссылочные нормативно-технические документы:

4. Ссылочные нормативно-технические док Обозначение НТД, на который дана ссылка	Номер пункта
ΓΟCT 12.1.005-88	2.1
ΓΟCT 1770-74	4.3.1; 4.6.1; 4.14.1
ГОСТ 3760-79	4.8; 4.13
ГОСТ 3885-73	3.1; 4.1; 5.1
ΓOCT 4204-77	4.14.1
ΓOCT 4212-76	4.10.1
ΓOCT 4328-77	4.3.1; 4.6.1
ΓOCT 4517-87	4.6.1; 4.14.1
ΓOCT 4919.1-77	4.3.1; 4.6.1; 4.8; 4.13
ΓOCT 6563-75	4.5
ΓOCT 6709-72	4.2.1; 4.3.1; 4.14.1
ΓOCT 10485-75	4.12
ΓOCT 10555-75	4.11
ΓOCT 10671.2-74	4.7
ΓOCT 10671.4-74	4.10.1
ΓOCT 10671.5-74	4.8
ΓOCT 10671.7-74	4.9
ΓOCT 17319-76	4.13
ГОСТ 18300-87	4.6.1
ΓOCT 18995.1-73	4.4
ΓOCT 19433-88	5.1
ΓOCT 20490-75	4.14.1
ΓOCT 22180-76	4.14.1
ΓOCT 25336-82	4.2.1; 4.3.1; 4.6.1; 4.14.1
ГОСТ 25794.1-83	4.3.1; 4.6.1
ГОСТ 25794.2-83	4.14.1
ГОСТ 27025-86	4.1a
ΓOCT 29227-91	4.3.1
ΓOCT 29251-91	4.3.1; 4.6.1; 4.14.1
ТУ 6-09-5360-87	4.6.1

- 5. Ограничение срока действия снято Постановлением Госстандарта СССР от 19.06.91 № 905
- 6. Изменения № 1, 2, утвержденные в июле 1986 г., июне 1991 г. (ИУС 10-86, 9 -91)